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LUV / LFV in meson and baryon decays
– TH overview –

Overview

• Models explaining b → s and b → c data

• Which of these models also predict LFV

• New observables

• LUV / LFV in Kaon decays



  

  Collider Data

No direct evidence of BSM at colliders

 b → s μμ  BR data < SM
Challenge:  B → light meson f.f.’s
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A coherent set of discrepancies in B decays

-
-
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b → s μμ  BR data < SM
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  Collider Data

No direct evidence of BSM at colliders

 b → s μμ  BR data < SM
Challenge:  B → light meson f.f.’s

➋ B → K* μμ  angular data
Challenge:  charm loops

➌ b → s μμ  /  b → s ee  ratios
Challenge:  (mostly) stats

➍ b → c τν  /  b → c ℓν  ratios
Challenge:  stats + syst
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A coherent set of discrepancies in B decays

-
-

loop
processes

tree
processes



  

Taken together, the above datasets display 
a remarkable degree of coherence

-

From a BSM perspective, natural to expect modifications
in both b → s and b → c datasets
(related by the SM SU(2)

L
 symmetry)

-

The only (known) viable, simultaneous, single-mediator
explanation of all datasets is the U

1
  leptoquark

-

Combined TH explanations

Note: here “single-mediator” refers to the mediator(s) entering 
the amplitudes for R

K
 and R

D
.  From a UV-complete perspective, 

the U
1
  can hardly come alone.
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Non-U1-LQ-alone  TH explanations

Many models offering alternative R
K
 & R

D
 explanations exist, 

but mostly use > 1  mediators

LQs other than the U
1
 alone

[Marzocca, 1803.10972; Popov+, 1905.06339; Bigaran+, 1906.01870; Balaji+,1911.08873;
Crivellin+, 1912.04224; Saad+, 2004.07880; Bhupal Dev+, 2004.09464; Saad, 2005.04352;
Kowalska+, 2007.03567; Gherardi+,2008.09548]

Non-LQ scalar / vector  sectors
[Boucenna+, 1608.01349; Li+, 1807.08530; Marzo+, 1901.08290; Borah+, 2007.13778;
Babu+, 2009.01771]

x-dims
[Megias+, 1707.08014; Blanke-Crivellin, 1801.07256]

RPV SUSY
[Trifinopoulos, 1904.12940; Altmannshofer+, 2002.12910]

D. Guadagnoli,  Snowmass LUV/LFV: TH Overview



  

 Why LeptoQuarks

R
K
  ≈  0.85

O(15%) effects in

ј
q

ј
ℓ



At the same time:

ΔΜs ≈  (ΔΜs)
SM

small corrections to

ј
q

јq

ℓ → ℓꞋ + X  
<  current limits

and small corrections to

ј
ℓ

ј
ℓ



NP

NP

NP

b

s

ℓ

ℓ

b

s

b

s

ℓ

ℓ

ℓ

ℓ
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 Why LeptoQuarks

Take

q

ℓ
LQ

then

q ℓ

q ℓ

ј
q

ј
ℓ is  tree

but

q

q

ј
q is  loop-

suppressed

q

q

ј
q

(at least for “genuine” LQs [Dorsner et al., ‘16, Davidson et al., ‘93])
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

  The U
1
  LQ

 It was realized that the vector LQ  U
1
  ~  (3, 1, 2/3)

  [Alonso, Grinstein, Martin-C, 1407.7044; Calibbi, Crivellin, Ota, 1506.02661]

would simultaneously explain all B discrepancies
  [Buttazzo, Greljo, Isidori, Marzocca, 1706.07808]
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

  The U
1
  LQ

This explanation has become even more consistent with recent data

including 
Belle RD(*) update

  [Aebischer et al., 1903.10434]
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

  The U
1
  LQ  and UV completions

As a massive vector boson, the U
1
  requires a UV completion

  [Barbieri, Murphy, Senia , 1611.04930]

as

a gauge boson of a spont.-broken gauge sym.

a composite vector boson

Pati-Salam’s “Lepton number as the 4th color” natural starting point

☞
Problem: push the scale of RH currents up, but not the U

1
 scale
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Consider SU(4)  SU(3)’  SU(2)
L 
 U(1)

X

The SM arises after

SU(4)  SU(3)’  U(1)
X SU(3)

c
  U(1)

Y

  [Georgi, Nakai , 1606.05865][Diaz, Schmaltz, Zhong, 1706.05033]
[Di Luzio, Greljo, Nardecchia, 1708.08450]





  

Which models 

also predict LFV?

Any of them, unless the dynamics responsible for LUV
implies  some symmetry that prevents LFV



  

(V – A)
q
 × (V – A)ℓ  structure

with Wilson-coeff. shift much larger for μμ  than for  ee

with 

HNP = G ( b̄ ' L γ
λb' L) ( τ̄ ' L γλ τ ' L)

G = 1 /ΛNP
2 ≪ GF

 All b → s data are explained at one stroke if one assumes

 Such pattern can be obtained from a purely 3rd-generation interaction
of the kind  [Glashow et al., 1411.0565]
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   Model zero



  

Above the EWSB scale, fields are in the
“gauge” basis, not the mass eigenbasis

Mass-basis unitary transformations 
induces LUV and LFV effects

b ' L ≡ (d ' L)3 = (U L
d )3 i (dL)i

τ ' L ≡ (ℓ ' L)3 = (U L
ℓ)3 i (ℓL)i

mass
basis

   Model zero

 Note: primed fields in HNP = G ( b̄ ' L γ
λb' L) ( τ̄ ' L γλ τ ' L)

 One can then parametrically relate measured LUV ( R
K(*)  

)

to  LFV decays such as  B → (K) τμ 

BRs ~ 10–8  expected, for generic choices of U matrices
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BR (B+→K +ℓ1
± ℓ2

∓ ) ≃ 2
(√RK−1)

2

RK
⋅ func.(U L

ℓ ratios)⋅BR (B+→K+μμ)

= 2%
= 4×10–7

[Glashow et al., 1411.0565]
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Actually certain LFV decays represent strong constraints

Given, at the UV matching scale

close the quark loop 
& attach a gauge boson 
→  two further leptons

[Feruglio, Paradisi, Pattori, ‘16, ‘17]  Lepton-decay LFV




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It was shown that explicit UV-complete constructions of the U
1
 LQ 

generally predict B-decay LFV while fulfilling  lept.-LFV limits

Example: 
PS3 models, in the IR reducing to 4321 models,  i.e. yielding the U

1
 LQ

Unambiguous prediction: large τ → μ  effective coupling

due to assumed U(2)5  flavor sym, and its breaking pattern
[Bordone, Cornella, Fuentes-M, Isidori, ‘18]

  LFV in explicit UV-complete models



to compare e.g. with

[LHCb, 2003.04352]

BR(B+ → K+ μ– τ+) <  3.9 × 10–5







  

More observables



  

Many nice ideas, most of which actually applicable 
in the short-medium term

Measure more LUV ratios

Extract long-distance  effects from data

New decays sensitive to C
9,10

  (e.g. of baryons)

New optimized ratios minimizing f.f. uncertainties

… 

Will focus on a single example which generated new activity
encompassing  exp,  precision perturbation TH, and  LQCD
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An example:  B

s
 → μμ γ

 The additional photon lifts chirality suppression

Direct measurement (= with γ detection) quite challenging 
at hadron colliders:

For light leptons: enhancement w.r.t. purely leptonic mode

ee channel:  enhancement is  5 orders of magnitude

No tracking  for photons

Plenty of photons from π0 ‘s 

B
s
 → ℓℓ γ  offers sensitivity to C

7  
, C

9  
, C

10
  (and primed)



No PDG entry on  B
s
 → ℓℓ γ
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  Bs
 → μμ γ:  “indirect” measurement

Basic Idea  [Dettori, DG, Reboud, 2017]  

Extract  B
s
 → μμ γ  from  B

s
 → μμ  event sample, 

by enlarging m
μμ

  below B
s
  peak

One can relate the m
μμ

  energy imbalance to the energy of the
additional, undetected 

Essential precondition: controlling all other backgrounds 

Approach merges the advantages of both decays:

Exploits  rich and ever increasing B
s
 → μμ  dataset

… to access  B
s
 → μμ  , that probes flavour anomalies more thoroughly
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  Bs
 → μμ γ : how a measurement looks like

[Dettori et al., 2017]

B
s
 → μμ γ  yield (expectedly) large

By construction, method accesses high-q2 part of  spectrum





most sensitive to C
9
 & C

10

preferred q2 for LQCD  B → γ  matrix elements (missing!)
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Radiative leptonic f. f.’s in LQCD 

Novel ideas & applications, both at low q2 (large Eγ
 ) and high q2 (small Eγ

 )

The required correlator (weak & e.m. current insertion between 
a B and the vac) has the desired large-Euclidean-t behavior
provided |pγ| ≠ 0 [Kane, Lehner, Meinel, Soni, ‘19]

Large Eγ
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Radiative leptonic f. f.’s in LQCD 
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As Eγ→0 one needs to sum virtual QED corrs. with real emission

Small Eγ [RM123, ‘15] [1st application (Kℓ2
), RM123, ‘17]

Novel ideas & applications, both at low q2 (large Eγ
 ) and high q2 (small Eγ

 )

Novel method to define IR-safe LQCD quantities

to cancel IR divergences.

Use the continuum, scalar-QED width to cancel IR divergences
for each γ momentum of the LQCD-calculated width

Main assumption: scalar QED (= pointlike mesons)

This implies a cutoff on Eγ ≪ 
QCD



  

  
B

s
 → μμγ  with energetic γ
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Calculation of f.f.’s using SCET + resonance parameterization

Restriction to q2 < 6 GeV2  to avoid charmonium 

Resonant contributions at q2  ~  1 GeV2  anyway: 
ϕ (for B

s 
), ϱ, ω (for B

d 
).

Breit-Wigner-like ansatz to include these contributions

Prediction

i.e. prediction completely dominated by the resonant regions

[Beneke-Bobeth-Wang, ‘20]



☞



[Krueger, Sehgal, ‘96]

For energetic γ, one can adopt a large Eγ , large m
b
 expansion.



  

  
B

s
 → μμγ  : full spectrum
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In [DG, Reboud, Zwicky, ‘17]  resonant ansatz used to 
rewrite low-q2  BR in terms of the measured BR( B

s
 → ϕγ )

Then main focus on large-q2 region, above narrow charmonium.

Broad-charmonium pollution estimated with similar resonant ansatz







  

  
B

s
 → μμγ  : full spectrum
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Then main focus on large-q2 region, above narrow charmonium.

Pollution substantially tamed in suitable ratio observable


rγ ≡

d BR (Bs→μμ γ)/dq2

d BR (B s→e e γ)/dq
2

In [DG, Reboud, Zwicky, ‘17]  resonant ansatz used to 
rewrite low-q2  BR in terms of the measured BR( B

s
 → ϕγ )





  

LUV / LFV 

in Kaon decays



  

  

The putative new dynamics in B decays may yield correlated
effects in suitable K decays.

D. Guadagnoli,  Snowmass LUV/LFV: TH Overview

the large amounts of Kaons produced 

the excellent decay-reconstruction capabilities (e.g. for K
S 
)

It turns out that B-physics machines can offer complementary info

on these decays w.r.t. Kaon machines, because of

Especially interesting examples include

K → πν ν̄ K → (π)μ e

Main point









  

  

The new physics for B decays can usually be described by
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Why correlated effects

two-quark { i, j }
two-lepton { k, l } 

operators

New scale Λ  may be fixed by size of observed discrepancies
( typically Λ = few to 10 x few TeV )

The C couplings encode flavor structure. If dynamics tree-level:

for new colorless massive bosons

for leptoquarks

[Di Luzio, Nardecchia, 1706.01868]

In many motivated scenarios, the λ’s entering B decays 
and those entering K decays are highly correlated



  

  

LHCb may well improve existing limits on K
L
 → μ e and  K+ → π+ μ e
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Example 1

CKM-like ansatz for the
λ(q) coupling

[Borsato et al., 1808.02006][Alves Jr. et al., 1808.03477]

TH assumptions

(V–A) × (V–A), SU(2)
L
-invariant

qqℓℓ Hamiltonian adopted in

[Buttazzo et al., 1706.07808]

Agnostic on the λ(ℓ) 
coupling

to explain B anomalies





  

Assuming a general, SU(2)
L
-invariant qqℓℓ  Hamiltonian
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[Buras et al., 1409.4557]

Assuming also that flavor couplings are ruled by MFV

the effects in R
K(*)

  are generally correlated with those in  b → s νν

results in much wider correlations between effects in

[Descotes-G et al., 2005.03734]

B → h
s
 νν  ( h

s
= K, K*, X

s 
) K → π νν

  Example 2







  

B-physics anomalies suggest BSM physics dominantly coupled to
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[Glashow et al., 1411.0565]3rd gen. of left-handed fermions

Effects / constraints involving lighter gen.’s are nicely compatible with

that distinguishes the 1st & 2nd from the 3rd one

U(2)5  =  U(2)
q
 × U(2)

ℓ
 × U(2)

u
 × U(2)

d
 × U(2)

e

[Barbieri et al., 1105.2296, 1512.01560][Blankenburg et al., 1204.0688]

K → π νν  are the only Kaon decays with 3rd-gen. leptons
Use of the above sym gives rise to a beautiful triple correlation

  Example 3







[Bordone et al., 1705.10729]



  

Plenty of models explaining R
K
 and R

D
 alike
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One leading “paradigm” : Leptoquarks

LUV and LFV are two sides of the same broken symmetry

So most of the above models also predict LFV

Interestingly, B discrepancies can be tested, soon, in plenty of ways

  Conclusions







(unless the LUV dynamics implies a symmetry that prevents LFV)

thanks to a synergy of exp, precision perturbation TH, and LQCD

Also interestingly, K physics offers nice complementary probes

And also interestingly, these probes are accessible, too
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